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Abstract. An existing method of moments (MoM) code
for the solution of complex scattering bodies has been ac-
celerated by means of a multilevel fast multipole method
(MLFMM). We demonstrate the usage of this technique both
for metallic structures (wires and surfaces) and for dielectric
bodies (volume and surface equivalence principle). Aspects
like the effect of the type of integral equation, precondition-
ing schemes, or iterative solution techniques are discussed.
But also limitations are addressed, which are encountered
when for instance attempting to model highly lossy dielectric
bodies with a high permittivity. Several validation and appli-
cation examples demonstrate the usefulness of this method,
both with regard to the obtained accuracy, but also with re-
spect to the potential saving in memory and run-time as com-
pared to a standard MoM formulation.

1 Introduction to the Multilevel Fast Multiple Method
(MLFMM)

1.1 Formulation of the MLFMM

A brief outline of the MLFMM will be presented in this
section. The interested reader is referred toCoifman et al.
(1993); Song and Chew(1994, 1995); Chew et al.(1997);
Song et al.(1997); Gyure and Stalzer(1998); Chew et al.
(2001) for more details.

The MLFMM is is based on a hierarchical grid. At the top
level (level 0) the whole computational space is enclosed by
one large cube. At the next level (level 1) this cube is then
subdivided in 3-dimensions into a maximum of 8 child cubes.
This process is repeated until at the finest level the cube side
length is approximately 0.25λ. Only non-empty cubes are
stored at each level forming a tree-like data structure. Fig-
ure1 shows the cubes at the finest level for one automotive
example.
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In the MoM framework a system of linear equations

Z I = V (1)

needs to be solved. The MLFMM is implemented by writing
the impedance matrixZ into the near-field termZnear and
the far-field termZf ar , i.e. Equation (1) then becomes

Znear I + Zf ar I = V . (2)

Znear consists of all matrix elements where basis and weight-
ing functions are within the same box or in adjacent boxes at
the finest level. Only this near-field mattrixZnear is com-
puted traditionally and stored in a sparse format. The system
of linear equations (1) is solved with an iterative technique
where matrix-vector productsZ Ik are required, withk indi-
cating the iteration counter. The far-field termZf ar is never
computed explicitly, but the matrix-vector productZf ar Ik is
computed via the MLFMM as

Zf ar Ik = D T A Ik (3)

with the following three phases:

– The Aggregation phase where all the basis functions
inside the same source cube (at the finest level) are
grouped together,

– TheTranslation phase from the source cube to the ob-
servation cube,

– TheDisaggregation phase from the centre of the obser-
vation cube to every basis function inside that cube.

All these phases make use of the addition theorem to ap-
proximate the free-space Green’s function

G(x̄, x̄
′

) =
e−jkR

R
≈

−jk

4π

∫
d2k̂ e−j k̄·(x̄−x̄m) TL(k̄, X̄
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Abstract. An existing method of moments (MoM) code
for the solution of complex scattering bodies has been ac-
celerated by means of a multilevel fast multipole method
(MLFMM). We demonstrate the usage of this technique both
for metallic structures (wires and surfaces) and for dielectric
bodies (volume and surface equivalence principle). Aspects
like the effect of the type of integral equation, precondition-
ing schemes, or iterative solution techniques are discussed.
But also limitations are addressed, which are encountered
when for instance attempting to model highly lossy dielectric
bodies with a high permittivity. Several validation and appli-
cation examples demonstrate the usefulness of this method,
both with regard to the obtained accuracy, but also with re-
spect to the potential saving in memory and run-time as com-
pared to a standard MoM formulation.

1 Introduction to the Multilevel Fast Multiple Method
(MLFMM)

1.1 Formulation of the MLFMM

A brief outline of the MLFMM will be presented in this sec-
tion. The interested reader is referred to??????? for more
details.

The MLFMM is is based on a hierarchical grid. At the top
level (level 0) the whole computational space is enclosed by
one large cube. At the next level (level 1) this cube is then
subdivided in 3-dimensions into a maximum of 8 child cubes.
This process is repeated until at the finest level the cube side
length is approximately 0.25λ. Only non-empty cubes are
stored at each level forming a tree-like data structure. Fig.??
shows the cubes at the finest level for one automotive exam-
ple.

In the MoM framework a system of linear equations

Z I = V (1)
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Fig. 1. The MLFMM boxes at the finest level for one automotive
example. Only half of the geometry is shown for clarity.
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and the number of termsL are determined empirically for a
given accuracyε by the formula

L = kD + 1.8 (kD)1/3 ( log10(1/ε) )2/3 (6)

with the wavenumberk and the box sizeD.
For the integration over the sphere a quadrature rule with

2L2 points is applied according toCoifman et al.(1993);
Song and Chew(1994). Looking at Eq. (4) the aggrega-

tion step is given bye+j k̄·(x̄
′
−x̄

m
′ ), the translation step by

TL(k̄, X̄
m

′
m
), and the disaggregation step bye−j k̄·(x̄−x̄m).

Eqation (2) must be solved with iterative techniques (for
example CGS, Bi-CGSTAB, etc.) since we only have the
sparseZnear and never storeZf ar . For general open struc-
tures the Electric Field Integral Equation (EFIE) is poorly
conditioned, causing the iterative technique to converge very
slowly (or even diverge). To accelerate the rate of conver-
gence we use a preconditioner that is computed from the
near-field matrixZnear . Implemented preconditioners in-
clude Incomplete LU (ILU), Block-Jacobi and Block-Jacobi
one-level-up.

1.2 Scaling of memory and CPU-time

Let N be the number of unknowns (i.e. number of basis func-
tions). The traditional MoM scales asN2 in terms of mem-
ory (to store the impedance matrix) and asN3 in terms of
CPU-time (to solve the linear set of equations). WhenN be-
comes large the MoM will therefore require too much mem-
ory and CPU-time. Much more favourable is the MLFMM,
which scales asN logN in memory and asN log2N in terms
of CPU-time. Figure2 shows typical memory and CPU-
times for an automotive example (full vehicle of approxi-
mate length 4.5 m including seats, windows, etc. at differ-
ent frequencies). One can see that the actual values for the
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– The Aggregation phase where all the basis functions
inside the same source cube (at the finest level) are
grouped together,

– TheTranslation phase from the source cube to the ob-
servation cube,

– TheDisaggregation phase from the centre of the obser-
vation cube to every basis function inside that cube.
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with the wavenumberk and the box sizeD.
For the integration over the sphere a quadrature rule with
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Eqn. (??) must be solved with iterative techniques (for

example CGS, Bi-CGSTAB, etc.) since we only have the
sparseZnear and never storeZf ar . For general open struc-
tures the Electric Field Integral Equation (EFIE) is poorly
conditioned, causing the iterative technique to converge very
slowly (or even diverge). To accelerate the rate of conver-
gence we use a preconditioner that is computed from the
near-field matrixZnear . Implemented preconditioners in-
clude Incomplete LU (ILU), Block-Jacobi and Block-Jacobi
one-level-up.

1.2 Scaling of memory and CPU-time

Let N be the number of unknowns (i.e. number of basis func-
tions). The traditional MoM scales asN2 in terms of memory
(to store the impedance matrix) and asN3 in terms of CPU-
time (to solve the linear set of equations). WhenN becomes
large the MoM will therefore require too much memory and
CPU-time. Much more favourable is the MLFMM, which
scales asN logN in memory and asN log2 N in terms of
CPU-time. Fig.??shows typical memory and CPU-times for
an automotive example (full vehicle of approximate length
4.5 m including seats, windows, etc. at different frequencies).
One can see that the actual values for the MLFMM (dots) fol-
low nicely the theoretically expected scaling (dashed lines).

The advantages of the MLFMM become more evident as
the geometry becomes larger in terms of the wavelength. The
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Fig. 2. Memory and CPU-time scaling for the MLFMM for an au-
tomotive example.

results for an aircraft are given in Table??. The MLFMM for
the 1.57 million unknowns case uses 2718 times less memory
than the MoM.

No. of unknowns MoM [GByte] MLFMM [GByte] MLFMM [hours]

1030891 16216 10.3 15.8
1573620 37785 13.9 21.8

Table 1. Typical memory requirement and CPU-times for an an-
tenna analysis on an aircraft. All MLFMM runs performed on a
64-bit AMD Opteron 248 (2.2 GHz).

1.3 Implementation details

Our MLFMM implementation in the computer code FEKO
(see? (2004)) includes amongst others the following fea-
tures, all of which were extensively verified:

– EFIE (valid for general open geometries) for metallic
triangular surface patches with basis functions accord-
ing to?,

– Metallic wires,

– Connection basis functions between wires and triangles,

– The combined field integral equation (CFIE) (only valid
for closed geometries),

– Dielectric cuboid elements with the volume equivalence
principle,
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tomotive example.

results for an aircraft are given in Table??. The MLFMM for
the 1.57 million unknowns case uses 2718 times less memory
than the MoM.
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64-bit AMD Opteron 248 (2.2 GHz).

1.3 Implementation details
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– The combined field integral equation (CFIE) (only valid
for closed geometries),

– Dielectric cuboid elements with the volume equivalence
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Table 1. Typical memory requirement and CPU-times for an an-
tenna analysis on an aircraft. All MLFMM runs performed on a
64-bit AMD Opteron 248 (2.2 GHz).

No. MoM [GByte] MLFMM MLFMM
of unknowns [GByte] [GByte] [hours]

1 030 891 16 216 10.3 15.8
1 573 620 37 785 13.9 21.8

MLFMM (dots) follow nicely the theoretically expected scal-
ing (dashed lines).

The advantages of the MLFMM become more evident as
the geometry becomes larger in terms of the wavelength. The
results for an aircraft are given in Table1. The MLFMM for
the 1.57 million unknowns case uses 2718 times less memory
than the MoM.

1.3 Implementation details

Our MLFMM implementation in the computer code FEKO
(seeFEKO, 2004) includes amongst others the following
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– Dielectric bodies with the surface equivalence principle
using the PMCHW formulation,

– The geometry can be located above real ground,

– Thin dielectric sheet approximation to model e.g. thin
windows.

It should be mentioned that both the CFIE and the vol-
ume equivalence principle result in Fredholm integral equa-
tions of the second kind with excellent convergence during
the iterative solution. Therefore when we use the CFIE or
volume cuboids, then we can use a smaller preconditioner
(or even no preconditioner). To obtain a small precondi-
tioner one can use the Block-Jacobi preconditioner (block-
diagonal obtained from boxes at finest level), or the Block-
Jacobi one-level-up (obtained from the parent boxes of the
Block-Jacobi). Reducing the level-of-fill of the ILU precon-
ditioner also reduces the size of the preconditioner. For gen-
eral open geometries the EFIE is poorly conditioned and re-
quires a good preconditioner (typically an ILU with the level-
of-fill=12 is used). The Bi-CGSTAB iterative solver outper-
formed the other solvers (CGS, RGMRES, etc.) in most of
our applications.

2 Considerations regarding the treatment of dielectric
bodies

For a fixed value ofL in eqn. (??), the error between the
exact Green’s function and the MLFMM approximation in
eqn. (??) is computed in a plane in Fig.??. It can be seen
that the maximum error corresponds to the situation when
the source and observation points are located at the corners
as indicated by the spheres (see also?).

The empirical formula to determineL in eqn. (??) is no
longer valid for large dielectric losses.L must then be deter-
mined numerically (?, Fig. 2) at each level in the MLFMM
tree so that the maximum error is below the required thresh-
old. However, ifL becomes too large the Hankel function in
eqn. (??) will diverge for large order and small argument.

One trick which can be used here is to increase the near-
field matrix by so-called buffer boxes, so that for the far-field
terms the minimum distances where the representation (??)
is used are larger.

The lower bound on the argument of the Hankel function
is dependent on the number of buffer boxes. By increasing
the number of buffer boxes from one to two, it can be seen
in Fig. ?? that the error decreases for a fixedL. Therefore,
if for a fixed buffer box size the numerically computed er-
ror remains above the required threshold, then the number of
boxes must be increased. The drawback is that the size of the
near field matrix increases dramatically with the number of
buffer boxes.

As example, consider human eye tissue with typical per-
mittivity εr = 55− j23. The required maximum error shall
be smaller than 10−3, and for a box size of 0.5λ0 in the
MLFMM tree we determine numerically that we need two
buffer boxes andL = 70. For comparison, with the same

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

−0.2

−0.1

0

0.1

0.2
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

x
source

y
source

Fig. 3. Relative error in the MLFMM representation of the free-
space Green’s function as a function of source/observer distance for
a fixed number of termsL.

box size and buffer boxes, the free-space caseεr = 1 will
need onlyL = 12. Since the integration over the unit Ewald
sphere in eqn. (??) uses a quadrature rule with 2L2 points,
the eye will use 34 more sample points. Therefore, as the di-
electric loss increases the MLFMM will become slower and
use more memory.

3 Application and validation examples

The MLFMM has been validated extensively with analytical,
published, as well as full MoM results. In this section some
verification examples shall be presented and discussed.

To verify the implementation of objects above real ground
consider the cylinder located above earth in Fig.??. The
cylinder is of height 3 m and diameter 1 m situated 0.2 m
above ground with complex permittivityεr = 6.5 − j0.6.
A plane wave is incident fromϑinc = 30◦ andϕinc = 0◦.
The bistatic RCS shall be computed versus the angleϕscat

for ϑscat = 60◦ and at a frequency off = 600 MHz.
This example is relatively small and the cylinder con-

sists of 6168 metallic triangles resulting in 9252 un-
knowns. In Fig.?? the bistatic RCS is depicted for the
full MoM (1306 MByte memory) and also for the MLFMM
(231 MByte memory). Excellent agreement can be observed
between the MoM, MLFMM and the published results in?
and? (not shown in the graph)
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features, all of which were extensively verified:

– EFIE (valid for general open geometries) for metallic
triangular surface patches with basis functions accord-
ing toRao et al.(1982),

– Metallic wires,

– Connection basis functions between wires and triangles,

– The combined field integral equation (CFIE) (only valid
for closed geometries),

– Dielectric cuboid elements with the volume equivalence
principle,

– Dielectric bodies with the surface equivalence principle
using the PMCHW formulation,

– The geometry can be located above real ground,

– Thin dielectric sheet approximation to model e.g. thin
windows.

It should be mentioned that both the CFIE and the vol-
ume equivalence principle result in Fredholm integral equa-
tions of the second kind with excellent convergence during
the iterative solution. Therefore when we use the CFIE or
volume cuboids, then we can use a smaller preconditioner
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Fig. 5. Bistatic RCS computation of a metallic cylinder above real
ground.

Dielectric cuboids treated with the volume equivalence
principle have been implemented in the MLFMM and ver-
ified to published results. In Fig.?? the monostatic RCS of a
dielectric slab computed with the MLFMM agrees very well
with that published in (?, Fig. 11.16, pp. 522). The dimen-
sions of the slab are 3.5λ0 × 2λ0 × 0.25λ0. The frequency is
1 GHz and the permittivity isεr = 3 − j0.09.

Fig. 6. Monostatic RCS from a dielectric slab computed with the
MLFMM using the volume equivalence principle.

To validate the MLFMM for more complex real-life prob-
lems we will compare results to those obtained using the
full MoM for a mobile phone radiating inside a Lancia car
model. The model in Fig.?? is divided into 20754 triangles
and 9 wire segments resulting in 30915 unknown basis func-
tions. This is a relatively small example, but the full MoM
already requires 14583 MByte of memory. The MoM run
was done on a Linux cluster of 16 processors (AMD Athlon
1 GHz) and the sum of the CPU-times of the 16 processes
is 33.17 hours (2.073 hours on average per process). The
MLFMM requires only 443 MByte of memory and 8.4 min-
utes of CPU-time on a single Intel P4 2.4 GHz processor.

Very good agreement between the full MoM and the
MLFMM can be seen in Fig.??, for both the far field and
the near field. The far field is computed versusϕ atϑ = 85◦

(5◦ above the horizon). The near field is computed along a
line inside the Lancia as shown in Fig.??.
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To validate the MLFMM for more complex real-life prob-
lems we will compare results to those obtained using the
full MoM for a mobile phone radiating inside a Lancia car
model. The model in Fig.?? is divided into 20754 triangles
and 9 wire segments resulting in 30915 unknown basis func-
tions. This is a relatively small example, but the full MoM
already requires 14583 MByte of memory. The MoM run
was done on a Linux cluster of 16 processors (AMD Athlon
1 GHz) and the sum of the CPU-times of the 16 processes
is 33.17 hours (2.073 hours on average per process). The
MLFMM requires only 443 MByte of memory and 8.4 min-
utes of CPU-time on a single Intel P4 2.4 GHz processor.

Very good agreement between the full MoM and the
MLFMM can be seen in Fig.??, for both the far field and
the near field. The far field is computed versusϕ atϑ = 85◦

(5◦ above the horizon). The near field is computed along a
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Fig. 4. Using 1 or 2 buffer boxes in the MLFMM gridding and as-
sociated error in the Green’s function versus the number of termsL.

(or even no preconditioner). To obtain a small precondi-
tioner one can use the Block-Jacobi preconditioner (block-
diagonal obtained from boxes at finest level), or the Block-
Jacobi one-level-up (obtained from the parent boxes of the
Block-Jacobi). Reducing the level-of-fill of the ILU pre-
conditioner also reduces the size of the preconditioner. For
general open geometries the EFIE is poorly conditioned and
requires a good preconditioner (typically an ILU with the
level-of-fill=12 is used). The Bi-CGSTAB iterative solver
outperformed the other solvers (CGS, RGMRES, etc.) in
most of our applications.

2 Considerations regarding the treatment of dielectric
bodies

For a fixed value ofL in Eq. (5), the error between the exact
Green’s function and the MLFMM approximation in Eq. (4)
is computed in a plane in Fig.3. It can be seen that the max-
imum error corresponds to the situation when the source and
observation points are located at the corners as indicated by
the spheres ((see alsoOhnuki and Chew, 2003).

The empirical formula to determineL in Eq. (6) is no
longer valid for large dielectric losses.L must then be deter-
mined numerically (Geng et al., 2001, Fig. 2) at each level in
the MLFMM tree so that the maximum error is below the re-
quired threshold. However, ifL becomes too large the Han-
kel function in Eq. (5) will diverge for large order and small
argument.
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Dielectric cuboids treated with the volume equivalence
principle have been implemented in the MLFMM and ver-
ified to published results. In Fig.?? the monostatic RCS of a
dielectric slab computed with the MLFMM agrees very well
with that published in (?, Fig. 11.16, pp. 522). The dimen-
sions of the slab are 3.5λ0 × 2λ0 × 0.25λ0. The frequency is
1 GHz and the permittivity isεr = 3 − j0.09.

Fig. 6. Monostatic RCS from a dielectric slab computed with the
MLFMM using the volume equivalence principle.

To validate the MLFMM for more complex real-life prob-
lems we will compare results to those obtained using the
full MoM for a mobile phone radiating inside a Lancia car
model. The model in Fig.?? is divided into 20754 triangles
and 9 wire segments resulting in 30915 unknown basis func-
tions. This is a relatively small example, but the full MoM
already requires 14583 MByte of memory. The MoM run
was done on a Linux cluster of 16 processors (AMD Athlon
1 GHz) and the sum of the CPU-times of the 16 processes
is 33.17 hours (2.073 hours on average per process). The
MLFMM requires only 443 MByte of memory and 8.4 min-
utes of CPU-time on a single Intel P4 2.4 GHz processor.

Very good agreement between the full MoM and the
MLFMM can be seen in Fig.??, for both the far field and
the near field. The far field is computed versusϕ atϑ = 85◦

(5◦ above the horizon). The near field is computed along a
line inside the Lancia as shown in Fig.??.
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To validate the MLFMM for more complex real-life prob-
lems we will compare results to those obtained using the
full MoM for a mobile phone radiating inside a Lancia car
model. The model in Fig.?? is divided into 20754 triangles
and 9 wire segments resulting in 30915 unknown basis func-
tions. This is a relatively small example, but the full MoM
already requires 14583 MByte of memory. The MoM run
was done on a Linux cluster of 16 processors (AMD Athlon
1 GHz) and the sum of the CPU-times of the 16 processes
is 33.17 hours (2.073 hours on average per process). The
MLFMM requires only 443 MByte of memory and 8.4 min-
utes of CPU-time on a single Intel P4 2.4 GHz processor.

Very good agreement between the full MoM and the
MLFMM can be seen in Fig.??, for both the far field and
the near field. The far field is computed versusϕ atϑ = 85◦

(5◦ above the horizon). The near field is computed along a
line inside the Lancia as shown in Fig.??.

Fig. 5. Bistatic RCS computation of a metallic cylinder above real
ground.

One trick which can be used here is to increase the near-
field matrix by so-called buffer boxes, so that for the far-field
terms the minimum distances where the representation (4) is
used are larger.

The lower bound on the argument of the Hankel function
is dependent on the number of buffer boxes. By increasing
the number of buffer boxes from one to two, it can be seen
in Fig. 4 that the error decreases for a fixedL. Therefore,
if for a fixed buffer box size the numerically computed er-
ror remains above the required threshold, then the number of
boxes must be increased. The drawback is that the size of the
near field matrix increases dramatically with the number of
buffer boxes.

As example, consider human eye tissue with typical per-
mittivity εr=55−j23. The required maximum error shall
be smaller than 10−3, and for a box size of 0.5λ0 in the
MLFMM tree we determine numerically that we need two
buffer boxes andL=70. For comparison, with the same box
size and buffer boxes, the free-space caseεr=1 will need
only L=12. Since the integration over the unit Ewald sphere
in Eq. (4) uses a quadrature rule with 2L2 points, the eye
will use 34 more sample points. Therefore, as the dielectric
loss increases the MLFMM will become slower and use more
memory.

3 Application and validation examples

The MLFMM has been validated extensively with analytical,
published, as well as full MoM results. In this section some
verification examples shall be presented and discussed.
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Dielectric cuboids treated with the volume equivalence
principle have been implemented in the MLFMM and ver-
ified to published results. In Fig.?? the monostatic RCS of a
dielectric slab computed with the MLFMM agrees very well
with that published in (?, Fig. 11.16, pp. 522). The dimen-
sions of the slab are 3.5λ0 × 2λ0 × 0.25λ0. The frequency is
1 GHz and the permittivity isεr = 3 − j0.09.

Fig. 6. Monostatic RCS from a dielectric slab computed with the
MLFMM using the volume equivalence principle.

To validate the MLFMM for more complex real-life prob-
lems we will compare results to those obtained using the
full MoM for a mobile phone radiating inside a Lancia car
model. The model in Fig.?? is divided into 20754 triangles
and 9 wire segments resulting in 30915 unknown basis func-
tions. This is a relatively small example, but the full MoM
already requires 14583 MByte of memory. The MoM run
was done on a Linux cluster of 16 processors (AMD Athlon
1 GHz) and the sum of the CPU-times of the 16 processes
is 33.17 hours (2.073 hours on average per process). The
MLFMM requires only 443 MByte of memory and 8.4 min-
utes of CPU-time on a single Intel P4 2.4 GHz processor.

Very good agreement between the full MoM and the
MLFMM can be seen in Fig.??, for both the far field and
the near field. The far field is computed versusϕ atϑ = 85◦

(5◦ above the horizon). The near field is computed along a
line inside the Lancia as shown in Fig.??.
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Fig. 6. Monostatic RCS from a dielectric slab computed with the
MLFMM using the volume equivalence principle.

To verify the implementation of objects above real ground
consider the cylinder located above earth in Fig.5. The cylin-
der is of height 3 m and diameter 1 m situated 0.2 m above
ground with complex permittivityεr=6.5−j0.6. A plane
wave is incident fromϑinc=30◦ andϕinc=0◦. The bistatic
RCS shall be computed versus the angleϕscat for ϑscat=60◦

and at a frequency off =600 MHz.
This example is relatively small and the cylinder con-

sists of 6168 metallic triangles resulting in 9252 un-
knowns. In Fig.5 the bistatic RCS is depicted for the
full MoM (1306 MByte memory) and also for the MLFMM
(231 MByte memory). Excellent agreement can be ob-
served between the MoM, MLFMM and the published re-
sults in Geng et al.(2000) and Hu and Chew(2001) (not
shown in the graph).

Dielectric cuboids treated with the volume equivalence
principle have been implemented in the MLFMM and ver-
ified to published results. In Fig.6 the monostatic RCS of a
dielectric slab computed with the MLFMM agrees very well
with that published inChew et al.(2001, Fig. 11.16, pp. 522).
The dimensions of the slab are 3.5λ0×2λ0×0.25λ0. The fre-
quency is 1 GHz and the permittivity isεr=3−j0.09.

To validate the MLFMM for more complex real-life prob-
lems we will compare results to those obtained using the
full MoM for a mobile phone radiating inside a Lancia car
model. The model in Fig.7 is divided into 20 754 triangles
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Fig. 7. Analysis of a mobile phone radiating inside a Lancia car
model at 600 MHz.
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Fig. 8. The far field (left) and near field (right) of a mobile phone
inside the Lancia car model as shown in Fig.??.

As an example for lossy dielectric structures, we consider
the dielectrically coated sphere shown in Fig.??. This ex-
ample was also presented by?. The inner sphere has a diam-
eterdin = 1.8λ0 and permittivityεin

r = 1.75 − j0.3. The
outer sphere hasdout = 2.0λ0 and εout

r = 1.25 − j1.25
(thus loss tangent of one). The surface equivalence principle
is used in the MoM and MLFMM with the number of un-

knownsN = 25152. Memory and run-times (no symmetry
used in all cases) are given in Table??. Fig. ?? shows the
results for the MoM, MLFMM and also a reference solution
using FEM (Finite Element Method). It can be seen that the
agreement between the three techniques is excellent.

Method Memory [GByte] Runtime [hours]

MoM 9.43 3.269
MLFMM 1.00 0.734

FEM 3.04 0.388

Table 2. Memory requirements and CPU-times for a dielectrically
coated sphere.

Fig. 9. Bistatic RCS of a dielectrically coated sphere.
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Fig. 9. Bistatic RCS of a dielectrically coated sphere.

Fig. 8. The far field (top) and near field (bottom) of a mobile phone
inside the Lancia car model as shown in Fig.7.

and 9 wire segments resulting in 30 915 unknown basis func-
tions. This is a relatively small example, but the full MoM
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Very good agreement between the full MoM and the
MLFMM can be seen in Fig.8, for both the far field and the
near field. The far field is computed versusϕ at ϑ=85◦(5◦
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above the horizon). The near field is computed along a line
inside the Lancia as shown in Fig.7.

As an example for lossy dielectric structures, we con-
sider the dielectrically coated sphere shown in Fig.9. This
example was also presented bySertel and Volakis(2004).
The inner sphere has a diameterdin=1.8λ0 and permittiv-
ity εin

r =1.75−j0.3. The outer sphere hasdout=2.0λ0 and
εout
r =1.25−j1.25 (thus loss tangent of one). The surface

equivalence principle is used in the MoM and MLFMM with
the number of unknownsN=25 152. Memory and run-times
(no symmetry used in all cases) are given in Table2. Fig-
ure 9 shows the results for the MoM, MLFMM and also a
reference solution using FEM (Finite Element Method). It
can be seen that the agreement between the three techniques
is excellent.
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4 Conclusions

We have shown that with the MLFMM large complex elec-
tromagnetic problems can be solved using only a fraction
of the memory and CPU-time as required by the full MoM.
The errors introduced by the MLFMM are fully controllable
unlike with other asymptotic techniques as Physical Optics
(PO) or Uniform Theory of Diffraction (UTD). This enables
the MLFMM to produce very accurate results. Furthermore,
the formulation and our implementation have the advantage
that the whole gridding and split into near and far field ma-
trices are done automatically. This eliminates any a priori
decision by the user to decide what should be in the near
field or the far field.

We have demonstrated the usage of this technique both
for metallic structures (wires and surfaces) and for dielectric
bodies (volume and surface equivalence principle). We have
also highlighted the difficulties encountered when attempt-
ing to model highly lossy dielectric bodies, and we have pre-
sented some solution strategies involving buffer boxes.
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