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Abstract. The multipole representation of Magnetoen-
cephalography (MEG) signals is known as a useful tool for
distinguishing between magnetic fields arising from the brain
and external disturbances. In this contribution we extend
this concept and show that a closed double-layer surface
with magnetometer probes is better suited to determine the
corresponding multipole amplitudesαlm than a conventional
single-layer surface with gradiometers and magnetometer
probes. For two different source configurations we show that
theαlm rapidly converge to the exact values. This proof of
concept motivates to further optimize the geometry of the
double-layer surface and the sensors’ positions.

1 Introduction

Neuronal activity of the human brain involves electrical cur-
rents which give rise to a magnetic field outside of the brain.
Since the typical intensity of the field is in the femtotesla
range its measurement requires a lot of effort. Current MEG
techniques involve magnetically shielded environments and
SuperconductingQuantumInterferenceDevices (SQUIDs).
From the measured magnetic field the field sources can be es-
timated by different algorithms. Obviously the reduction of
noise and the elimination of external disturbances improve
the estimation of the field sources. Assuming divergence-
free current sources only, the magnetic field outside the brain
can be described by a scalar magnetic potential which will
be represented by a spherical-multipole expansion. It has
been shown that this technique allows to separate external
disturbances from internal sources (Signal Space Separa-
tion) (Taulu et al., 2004). We extend this idea and intro-
duce a closed double-layered measurement surface. The field
within this source-free enclosure can be uniquely determined
if Neumann or Dirichlet boundary data are given on its sur-
face. From the knowledge of its boundary values the mag-
netic field is uniquely determined also outside of the en-

closure, particularly also in the magnetically homogeneous
brain outside of the sources. The field measured on this new
measurement surface is represented by a spherical-multipole
expansion which conveniently can be used to interpret the
biomagnetic field as well as to optimize the shape of the mea-
surement surface and the sensors’ positions.

In Sect. 2 we demonstrate that the neuronal activity, that
is, the divergence-free currents which produce the biomag-
netic field can be described by magnetic dipoles which leads
us to a most simple characterization of the forward problem.
Since the domain outside the brain is free of sources, we de-
duce a spherical-multipole expansion for that curl-free mag-
netic field arising from sources in the brain. In Sect. 3 we
show how the measurement surface has been designed to en-
sure that we are able to determine the multipole-amplitudes
uniquely. Section 4 illustrates how the single-layer and
double-layer surfaces were implemented, as well as the set-
up of the system of linear equations for numerically deter-
mining the spherical-multipole amplitudesαlm.

Numerical results for a single-layer measurement surface
with symmetric axial first order gradiometer as well as mag-
netometer data, and for a closed double-layer surface using
magnetometer data only are finally presented in Sect. 5.

2 Forward problem

2.1 Magnetic dipole moments

While the brain is processing information, small electric cur-
rents flow inside the neural system producing a magnetic
field outside of the head. This extremely weak magnetic field
can be recorded by suitable MEG devices (Hämäläinen et
al., 1993). Because of the complexity of the neuronal sys-
tem, the exact current flows are difficult to describe. Without
going into detail of the brain physiology, we shall point out
a few of the relevant aspects leading to MEG signals. It is
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Fig. 1. Schematic view of a simplified head model and a closed
double-layer surface. The radius of the first layer isr1 and the
radius of the second one isr2. The measurement surface is the
entire (closed) surface of the gray domain. The vectorrs points on

that surface whereBr ∼
∂φm(r)
∂r

∣∣∣
r=rS

is measured.

assumed that the main source of MEG signals areexcitatory
postsynapticpotentials (EPSPs) (Nunez, 1981) in the input
part of the neurons. The EPSPs cause current flows inside
the excited neurons (Gloor, 1985), which – due to the com-
monly presumed conservation of charge at each time – must
be balanced by an electrical counterflow outside of the neu-
ron (Baillet et al., 2001). Usually, the intracellular current
densityJp(r) is called primary current density while the ex-
tracellular partJ V (r) is referred to as the volume current
density.

The total electric-current densityJ (r) is

J (r)= Jp(r)+J V (r). (1)

It is commonly presumed that at any time there is no accu-
mulation of charge in the neuronal system, hence the total
current must be divergence-free according to

∇ ·J (r)= 0 (2)

which we may electrically interpret as a closed current cir-
cuit. Hence it is possible to representJ (r) by a suitable num-
ber of located magnetic dipoles described by corresponding
dipole momentsm. For a given current density located in
1V it holds that

m|1V =
µ0

2

∫
1V

r ×J (r)d3r (3)

which in case of a single closed current circuit with a (di-
rected) areaF and a current strengthI has the solution

m =µ0F I. (4)

Commonly tens of thousands of neurons have to be activated
at the same time to have measurable MEG signals, therefore
the magnetic dipole moment can be understood as an equiv-
alent source of the net effect of current circuits covering sev-
eral cubic centimeters of activated brain tissue.

In general, the frequencies for brain signals are in the
range of or below 100 Hz, hence we can neglect the time
derivativesσ |∂E/∂t | and |∂B/∂t | in Maxwell’s equations
(Hämäläinen et al., 1993). This leads us to the following
quasi-static approximation of Maxwell’s equations for the
magnetic field produced by a magnetic dipole momentm lo-
cated atr0

B(r)=
µ0

4π

3(r −r0)(m ·(r −r0))

|r −r0|
5

−
m

|r −r0|
3
. (5)

2.2 Multipole expansion

Assuming that the domain outside of the head is homoge-
neous and free of sources, Ampère’s law in the magneto-
quasi-static approximation reads

∇×B(r)= 0. (6)

Outside of the head the magnetic field produced by closed-
current circuits (or by magnetic dipoles) in the head consists
of curl-free fields only, hence it is always possible to deduce
that magnetic field from a scalar magnetic potentialφm(r)

according to

B(r)= −µ0∇φm(r). (7)

With ∇ ·B = 0 we easily derive the Laplace equation

1φm(r)= 0. (8)

In spherical coordinates(r,ϑ,ϕ) the general solution can be
found as a spherical-multipole expansion

φm(r)=

∞∑
l=0

l∑
m=−l

[
αlm

Ylm(θ,φ)

r l+1
+βlmr

lYlm(θ,φ)

]
(9)

with multipole-amplitudes (expansion coefficients)αlm and
βlm. The surface-spherical harmonics are related to associ-
ated Legendre functions and harmonic functions by

Ylm(θ,φ)=

√
2l+1

4π

(l+1)!

(l−1)!
Pml (cosθ)ejmφ . (10)

As can be seen from Eq. (9) only the part in the multipole ex-
pansion belonging toαlm remains regular forr → ∞. Con-
sequently, that part can be interpreted as the magnetic field
arising from magnetic sources inside the head. On the other
hand, only the part in the multipole expansion belonging to
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Fig. 2. Closed double-layer surface with isotropically distributed
pointlike magnetometers (black dots). The radius of the first layer
is r1 = 10 cm and the radius of the second layer isr2 = 13 cm.

βlm remains finite forr→ 0, therefore this part represents the
magnetic field arising from sources outside the head.

In this paper we consider sources inside the head only and
neglect external (interfering) sources, hence only the field
part with theαlm is relevant.

3 Implementation of the measurement surfaces

The scalar potentialφ(r)within the closed measurement sur-
face (gray domain in Fig.1) can be determined uniquely,
if the corresponding Neumann (∂φ(r)/∂n|r=rS ) or Dirich-
let (φ(r)|r=rS ) boundary data are known. In this paper, the
measurement surface consists of two connected hemispheres
with different radii (Fig.2). From Eq. (7) we obtain

Br(r)|r=rS = −µ0
∂φm(r)

∂r

∣∣∣∣
r=rS

, (11)

on the hemispheres, that is, the solution of the Neumann
problem is equivalent to finding the normal component of
the magnetic field of the measurement surface. Practically,
we measure the radial component at isotropically distributed
points on a closed double-layer surface (Fig.2). The results
will be compared to those ones obtained from a single mea-
surement surface (Fig.3) on which we assume given Cauchy
data, i.e.,Br(r)|r=rS and simultaneously(∂Br(r)/∂r)|r=rS .
The latter configuration is the standard procedure in MEG
measurement, where magnetometers as well as gradiometers
are taken into account.

To compare the results obtained from the different mea-
surement surfaces, we solve the forward problem analyti-
cally from Eq. (5) for two simple source configurations. For
the single-layer configuration the positions of the magne-
tometers and gradiometers are alternating. The radius of
the single-layer surface as well as of the first layer of the

Fig. 3. Single-layer surface with isotropically distributed point-
like magnetometers (black dots) and pointlike gradiometers (white
dots). The units of the axes are in meters.

closed surface isr1 = 10 cm. For the second layer of the
closed double-layer surface the radius has been chosen to
r2 = 13 cm.

Next, the magnetic fieldB(r) of the mentioned simple
source configuration is expressed as a spherical-multipole ex-
pansion Eq. (9) with multipole amplitudesαlm only. For each
of the field values at the probes’ positions we set up a corre-
sponding spherical-multipole expansion. Doing this for each
probe, we end up with a system of linear equations. Its so-
lution yields the multipole amplitudes of the reconstructed
magnetic field, which then is compared to the original (true)
field value at the probes’ positions.

The first of the source configurations consists of a mag-
netic dipole located at the origin of the coordinate system
and polarized in thez-direction, while for the second one we
place the magnetic dipole atr = 5 cm ẑ polarized in thex-
direction. Arranging the multipole expansions for each of
the measurement points in rows, the system of linear equa-
tions reads as
�1

1,−1 �
1
1,0 ... �

1
l,l

�2
1,−1 �

2
1,0 ... �

2
l,l

...
. . .

. . .
...

�N1,−1 �
N
1,0 ... �

N
l,l


︸ ︷︷ ︸

=A


α1,−1
α1,0
...

αl,l


︸ ︷︷ ︸

=α

=


Br(r1)

Br(r2)
...

Br(rN )


︸ ︷︷ ︸

=b

. (12)

Here,�kl,m =
(l+1)Ylm(θk,φk)

r l+2
k

, αlm are the spherical-multipole

amplitudes whileBr(rk) denotes the radial component of the
measured magnetic field at thek-th measurement point.

The exact solution of the system of linear equations might
be obtained only if it is at least squared and of full rank. Be-
cause the number of columns ofA are depending on the mul-
tipole orderl, the number of necessary rows (measurement
points) is given byN = (l+1)2−1.
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Fig. 4. Relative reconstruction error of the componentsBr (black
◦) andBθ (black ×) on a closed double-layer surface and of the
original multipole expansion (red) as a function of the orderl of
the multipole expansion. Source: Dipole at the origin, polarized in
z-direction.

For the double-layer surface we have to combine the data
of the inner and the outer layer. The single-layer surface con-
sists of magnetometers and (symmetrically arranged) gra-
diometers. A gradiometer provides a first order derivation
of B(r) in radial direction at the measurement point, thus the
elements of the coefficient matrix of the gradiometer probe
are

�̃kl,m=

(l+1)Ylm(θk,φk)

r l+2
g2,k

−
(l+1)Ylm(θk,φk)

r l+2
g1,k

rg2,k−rg1,k

=
�
g2,k
l,m −�

g1,k
l,m

1rg,k
(13)

while the elements of the right hand side read as

B̃r(rk)=
Br(rg2,k)−Br(rg1,k)

1rg,k
. (14)

Here,rg1,k denotes the distance of the first coil andrg2,k of
the second one of the axial gradiometer. Thus the combina-
tion of magnetometer and gradiometer probes leads us to the
following system of linear equations
�̃1

1,−1 �̃1
1,0 ... �̃1

l,l

�2
1,−1 �2

1,0 ... �2
l,l

...
. . .

. . .
...

�̃N−1
1,−1 �̃

N−1
1,0 ... �̃N−1

l,l

�N1,−1 �N1,0 ... �Nl,l



α1,−1
α1,0
...

αl,l

 =


B̃r(r1)

Br(r2)
...

B̃r(rN−1)

Br(rN )

 .(15)

For estimating the quality of the reconstructed fields we
define a relative error according to

errψ =

∑N
k=1|Bkψ −B

k(rec)
ψ |∑N

k=1|Bkψ |
, ψ ∈ {r,θ,φ} (16)

Fig. 5. Relative reconstruction error of the componentsBr (black◦)
andBθ (black×) on a single-layer surface and of the original mul-
tipole expansion (red) as a function of the orderl of the multipole
expansion. Source: Dipole at the origin, polarized inz-direction.

4 Numerical results

The first example concerns the magnetic field produced by
a magnetic dipole momentm =mẑ located at the origin of
the coordinate system. For this configurationBφ vanishes,
and we are investigating the relative errors of theBr andBθ
components only. Moreover, in this case the only non-zero
multipole amplitude isα1,0. In the following text we will de-
note the analytically obtained (exact) multipole amplitudes
asαlm while the multipole amplitudes obtained from the re-
construction procedure are referred to asαrec

lm .
The black curves in Fig.4 show that the measurement

on the closed double-layer surface yields an excellent re-
construction of the magnetic field at the measurement points
with a few multipole amplitudes considered. The magnetic-
field error which can be estimated by the summed difference
between corresponding multipole amplitudes of the recon-
structed field and the original field, also shows an excel-
lent and stable behavior when a few multipole amplitudes
are considered. In contrast, for the single-layer measure-
ment surface the deviation between reconstructed and orig-
inal fields even diverge with an increasing order of the mul-
tipole expansion as we can deduce from the results shown in
Fig. 5.

The second example was performed with a magnetic
dipole momentm =mx̂ located atx = 0, y = 0, z= 5cm.
Since the number of relevant multipole amplitudes increases
if the sources are located off the origin, also the numbers
of multipole amplitudes needed for the reconstruction in-
crease. However, we again observe from Fig.6 that the
magnetic field reconstructed from the measurement on the
closed double-layer surface constantly converges to the orig-
inal field.

Note that reconstruction of the tangential components
Bθ (r) andBφ(r) also is converging, however, not as fast
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Fig. 6. Relative reconstruction error of the componentsBr (black
◦), Bθ (black×) , andBφ (black�) on a closed double-layer sur-
face and of the original multipole expansion (red) as a function of
the orderl of the multipole expansion. Source: Dipole atr = 5 cm
ẑ, polarized inx-direction.

as for the radial component. The reason for this behavior
can simply be found in the underlying numerical procedure,
as the corresponding system of linear equations has been
solved with respect to the radial component at the measure-
ment points. Again, the reconstruction of the magnetic field
from measurements on a single-layer measurement surface
fails (see Fig.7), i.e., it diverges with an increasing number
of multipole amplitudes considered.

5 Conclusions

It has been shown that the use of a closed double-layer
measurement surface is excellently suited to reconstruct the
spherical-multipole expansion of a divergence-free quasi-
static magnetic field. In contrast, the same method equiva-
lently applied to the conventionally used single-layer surface
with magnetometers and gradiometers showed no conver-
gence. The method can be applied to Magnetoencephalog-
raphy as well as to Magnetocardiography. Particularly, it is
best suited for the currently developed new type of magnetic
field sensors based on magnetoelectric composite materials.

Fig. 7. Relative reconstruction error of the componentsBr (black
◦), Bθ (black×) , andBφ (black�) on a single-layer surface and
of the original multipole expansion (red) as a function of the orderl

of the multipole expansion. Source: Dipole atr = 5 cmẑ, polarized
in x-direction.
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